2019考研數(shù)學:教你三步搞定證明題
1、結合幾何意義記住零點存在定理、中值定理、泰勒公式、極限存在的兩個準則等基本原理,包括條件及結論。
知道基本原理是證明的基礎,知道的程度(即就是對定理理解的深入程度)不同會導致不同的推理能力。如2006年數(shù)學一真題第16題(1)是證明極限的存在性并求極限。
只要證明了極限存在,求值是很容易的,但是如果沒有證明第一步,即使求出了極限值也是不能得分的。因為數(shù)學推理是環(huán)環(huán)相扣的,如果第一步未得到結論,那么第二步就是空中樓閣。
這個題目非常簡單,只用了極限存在的兩個準則之一:單調有界數(shù)列必有極限。只要知道這個準則,該問題就能輕松解決,因為對于該題中的數(shù)列來說,"單調性"與"有界性"都是很好驗證的。像這樣直接可以利用基本原理的證明題并不是很多,更多的是要用到第二步。
2、借助幾何意義尋求證明思路
一個證明題,大多時候是能用其幾何意義來正確解釋的,當然最為基礎的是要正確理解題目文字的含義。
如2007年數(shù)學一第19題是一個關于中值定理的證明題,可以在直角坐標系中畫出滿足題設條件的函數(shù)草圖,再聯(lián)系結論能夠發(fā)現(xiàn):兩個函數(shù)除兩個端點外還有一個函數(shù)值相等的點,那就是兩個函數(shù)分別取最大值的點(正確審題:兩個函數(shù)取得最大值的點不一定是同一個點)之間的一個點。這樣很容易想到輔助函數(shù)F(x)=f(x)-g(x)有三個零點,兩次應用羅爾中值定理就能得到所證結論。
►下面歸納中值定理常考的幾個類型及解法
再如2005年數(shù)學一第18題(1)是關于零點存在定理的證明題,只要在直角坐標系中結合所給條件作出函數(shù)y=f(x)及y=1-x在[0,1]上的圖形就立刻能看到兩個函數(shù)圖形有交點,這就是所證結論,重要的是寫出推理過程。
從圖形也應該看到兩函數(shù)在兩個端點處大小關系恰好相反,也就是差函數(shù)在兩個端點的值是異號的,零點存在定理保證了區(qū)間內有零點,這就證得所需結果。如果第二步實在無法完滿解決問題的話,轉第三步。
3、逆推法
從結論出發(fā)尋求證明方法。如2004年第15題是不等式證明題,該題只要應用不等式證明的一般步驟就能解決問題:即從結論出發(fā)構造函數(shù),利用函數(shù)的單調性推出結論。
在判定函數(shù)的單調性時需借助導數(shù)符號與單調性之間的關系,正常情況只需一階導的符號就可判斷函數(shù)的單調性,非正常情況卻出現(xiàn)的更多(這里所舉出的例子就屬非正常情況),這時需先用二階導數(shù)的符號判定一階導數(shù)的單調性,再用一階導的符號判定原來函數(shù)的單調性,從而得所要證的結果。該題中可設F(x)=ln*x-ln*a-4(x-a)/e*,其中eF(a)就是所要證的不等式。
最新資訊
- 管理類聯(lián)考考生必看!掌握《管理類綜合能力》邏輯推理公式,解鎖高分(匯總篇)2024-12-18
- 管綜邏輯解題公式:因果型假設題2024-12-18
- 管綜邏輯解題公式:因果型支持題2024-12-18
- 管綜邏輯解題公式:因果型削弱題2024-12-18
- 管綜邏輯解題公式:復雜命題真假話命題2024-12-18
- 管綜邏輯解題公式:簡單命題真假話命題2024-12-18
- 2025年MBA管綜寫作沖刺:考場有效提分技巧(附模板)2024-12-11
- 15分鐘做完考研英語閱讀理解,你可以這樣做2024-11-22
- 考研英語二大作文——圖表類高分模板2024-11-21
- 考研英語二大作文:常用句型與替換詞考前高效積累2024-11-21