2014年國家公務(wù)員考試行測(cè)輔導(dǎo):數(shù)量關(guān)系解題技巧
課程推薦:2014年公務(wù)員課程7天免費(fèi)學(xué) :基礎(chǔ)精講 高效強(qiáng)化 高效押題 專項(xiàng)特訓(xùn)
個(gè)性課程:2014年公務(wù)員個(gè)性輔導(dǎo):申論批改 技巧專講 沖刺密卷 個(gè)性定制
對(duì)于這類問題,通常需要考慮“極端分析法”并結(jié)合構(gòu)造法,即首先分析題意,然后構(gòu)造出滿足題目要求的最極端的情況,據(jù)此解決題目的一種方法。接下來,通過幾道題來看一下極端分析法解構(gòu)造問題的思路。
例1.現(xiàn)有21朵鮮花分給5人,若每個(gè)人分得的鮮花數(shù)各不相同,則分得鮮花最多的人至少分得( )朵鮮花。
A.7 B.8
C.9 D.10
解析:21多鮮花是固定的,要分給5個(gè)人,題目問的是分得鮮花最多的人至少分得多少朵。要想讓分得鮮花最多的人要盡量的少,那么這5個(gè)人的鮮花數(shù)應(yīng)該盡量的接近。假設(shè)分得鮮花最多的人至少分得了X朵,那么第二多的人要盡量和他接近,只能是X-1朵,第三多的人只能是X-2朵,第四多的為X-3朵,第五多的為X-4朵,5個(gè)人鮮花數(shù)的總和為21朵。即X+X-1+ X-2+ X-3+ X-4≥21,解得X≥6.2,因?yàn)轷r花數(shù)只能是整數(shù),所以分得鮮花最多的人至少分得7朵。注意,等式最后用的是≥,而不是=,這是因?yàn)椋厦娴氖阶邮俏覀兝脴O端分析的方法,構(gòu)造出的滿足題意的最極端的情況,X-1 ≥第二個(gè)人的實(shí)際值,同理,X-2+,X-3,X-4也都分別≥其代表的實(shí)際值,那么它們的和也應(yīng)該≥實(shí)際值的和,即≥21。所以選擇A選項(xiàng)。
例2.有4支隊(duì)伍進(jìn)行4項(xiàng)體育比賽,每項(xiàng)比賽的第一、第二、第三、第四名分別得到5,3,2,1分。每隊(duì)的4項(xiàng)比賽的得分之和算作總分,如果已知各隊(duì)的總分不相同,并且A隊(duì)獲得了三項(xiàng)比賽的第一名,問總分最少的隊(duì)伍最多得多少分?( )
A.7 B.8
C.9 D.10
解析:要想讓總分最少的隊(duì)伍的分最多,其他隊(duì)伍的得分要盡量的少。已知每項(xiàng)比賽的第一、第二、第三、第四名分別得到5,3,2,1分,即每場(chǎng)比賽貢獻(xiàn)11分,4項(xiàng)比賽的總分總共應(yīng)為44分。A隊(duì)已獲得了三項(xiàng)比賽的第一名,那么要想讓A隊(duì)的得分盡量少,只能是最后一項(xiàng)比三得第四名,這樣A隊(duì)的總分為3×5+1=16分,如果設(shè)總分最少的隊(duì)伍的得分為X,那么,剩下的兩個(gè)隊(duì)伍比它多還要盡量和它接近,只能分別是X+1, X+2。又知總分為44分,所以16+X+X+1+X+2≤44,X≤8.3,因?yàn)榈梅种荒転檎麛?shù),那么X=8。
所以選擇B選項(xiàng)。這里之所以用≤,是因?yàn)閄+1, X+2分別≤其代表的實(shí)際值。分析方法如上題所示。
溫馨提示:請(qǐng)大家及時(shí)關(guān)注環(huán)球網(wǎng)校公務(wù)員頻道及論壇,小編將第一時(shí)間為大家提供公務(wù)員考試最新息。
編輯推薦:
2014年國家公務(wù)員考試行測(cè)輔導(dǎo):行程問題解題方法
2014年國家公務(wù)員考試行測(cè)輔導(dǎo):現(xiàn)期量比重解題方法
歷年國家公務(wù)員考試行測(cè)題型分析:數(shù)量關(guān)系
2014年國家公務(wù)員考試行測(cè)數(shù)量關(guān)系題輔導(dǎo):容斥原理問題
最新資訊
- ‌2025年國考備考資料免費(fèi)下載:高頻成語辨析早讀講義助你突破語言關(guān)2024-12-12
- 2025國考申論范文下載:以創(chuàng)新為翼,翱翔制造強(qiáng)國藍(lán)天2024-11-15
- 2025年國考申論范文:教養(yǎng)之光,文明社會(huì)的金鑰匙2024-11-14
- 2025國考申論寫作范文:以“中國精神”為筆,繪就民族脊梁新篇章2024-11-14
- 2025年國考行測(cè)答題技巧:片段積累小技巧,彎路走的少之疑問句2024-11-02
- 【國考必贏】2025國考申論備考:講解稿的滿分秘籍2024-10-23
- 2025國考常識(shí)備考之中國山脈2024-10-10
- 2025年國考申論范文:創(chuàng)新引領(lǐng)未來,奮斗鑄就輝煌2024-09-20
- 2025年國考申論范文:守護(hù)綠水青山,共繪金山銀山新畫卷2024-09-19
- 點(diǎn)擊查看!2025年國家公務(wù)員備考計(jì)劃2024-09-18