鍋爐、壓力容器和管道焊接技術(shù)的新發(fā)展
近10年來,國內(nèi)外鍋爐、壓力容器和管道的焊接技術(shù)取得了引人注目的新發(fā)展。隨著鍋爐、壓力容器和管道工作參數(shù)的大幅度提高及應(yīng)用領(lǐng)域的不斷擴展,對焊接技術(shù)提出了愈來愈高的要求。所選用的焊接方法、焊接工藝、焊接材料和焊接設(shè)備首先應(yīng)保證焊接接頭的高質(zhì)量,同時必須滿足高效、低耗、低污染的要求。因此,在這一領(lǐng)域內(nèi),焊接工作者始終面臨復(fù)雜而艱巨的技術(shù)難題,要求不斷尋求最佳的解決方案。通過不懈的努力已在許多關(guān)鍵技術(shù)上取得重大突破,并在實際生產(chǎn)中得到成功的應(yīng)用,取得了可觀的經(jīng)濟效益,使鍋爐、壓力容器和管道的焊接技術(shù)達到了新的發(fā)展水平。
鑒于鍋爐、壓力容器和管道涉及到許多重要的工業(yè)部門,其中包括火力、水力、風力,核能發(fā)電設(shè)備,石油化工裝置,煤液化裝置、輸油、輸氣管線,飲料、乳品加工設(shè)備,制藥機械,飲用水處理設(shè)備和液化氣儲藏和運輸設(shè)備等,焊接技術(shù)的內(nèi)容是相當廣泛的。本文因篇幅所限,僅就鍋爐、壓力容器和管道用鋼,先進的焊接方法和焊接過程機械化和自動化三方面的新發(fā)展作如下概括的介紹。
鍋爐壓力容器和管道用鋼的新發(fā)展
1 鍋爐用鋼的新發(fā)展
在鍋爐、壓力容器和管道用鋼這三類鋼中,鍋爐用鋼的發(fā)展最為迅速。這主要是近10年來,火力發(fā)電站用燃料―煤炭的供應(yīng)日趨緊張,降低燃料的消耗已成為世界性的迫切需要。為此,必須提高鍋爐的效率。通常鍋爐效率每提高5%,燃料的消耗可降低15%.而鍋爐的效率基本上取決于其運行參數(shù)―蒸汽壓力和蒸汽溫度。最近,上海鍋爐廠生產(chǎn)600~670MW超臨界鍋爐的蒸汽壓力為254bar,過熱蒸汽溫度為569℃,鍋爐的熱效率約為43%.如果鍋爐的運行參數(shù)提高到特超臨界級,即蒸汽壓力為280 bar蒸汽溫度為620℃,鍋爐的熱效率可提高到47%.目前世界上特超臨界鍋爐的最高工作參數(shù)為350 bar/700℃/720℃,鍋爐的熱效率達到了50% .
這里應(yīng)當強調(diào)指出,隨著鍋爐效率的提高,鍋爐煙氣中的SO2、NOX和CO2的排放量逐漸下降。因此從減少大氣污染的角度出發(fā),設(shè)計制造高工作參數(shù)的特超臨界鍋爐也是必然的發(fā)展趨勢。
鍋爐蒸汽參數(shù)的提高直接影響到鍋爐受壓部件的強度性能。在超臨界和特超臨界工作條件下,鍋爐的主要部件,如膜式水冷壁,過熱器,再熱器、高壓出口集箱和主蒸汽管道的工作溫度均已達到鋼材蠕變溫度范圍以內(nèi)。制作這些部件的鋼材在規(guī)定的工作溫度下,除了具有足夠的蠕變強度 (或105h高溫持久強度)外,還應(yīng)具有高的耐蝕性和抗氧化性以及良好的焊接性和成形性能。
從鍋爐主要部件用鋼的發(fā)展階段來看,即便是工作溫度相對較底的水冷壁部件,也必須采用鉻含量大于2%的Cr-Mo鋼或多組元的CrMoVTiB鋼。按現(xiàn)行的鍋爐制造規(guī)程,這類低合金鋼,當管壁厚度超過規(guī)定的界限時,焊后必須進行熱處理。由于膜式水冷壁的外形尺寸相當大,工件長度一般超過30m,焊后熱處理不僅延長了生產(chǎn)周期,而且大大提高了制造成本。為解決這一問題,國外研制了一種專用于膜式水冷壁的新鋼種7CrMoVTiB1010.最近,該鋼種已得到美國ASME的認可,并已列入美國ASME材料標準,鋼號為A213-T24.這種鋼的特點是含碳量控制在0.10%以下,硫含量不超過0.010%,因此具有相當好的焊接性。焊前無需預(yù)熱。當管壁厚度不大于10 m m,焊后亦可不作熱處理。
在特超臨界的蒸氣參數(shù)下,當蒸氣溫度達到700℃,蒸氣壓力超過370 bar時,水冷壁的壁溫可能超過600℃。在這種條件下,必須采用9%Cr或12%Cr馬氏體耐熱鋼。這些鋼種對焊接工藝和焊后熱處理提出了嚴格的要求,必須采取特殊的工藝措施,才能確保接頭的焊接質(zhì)量。
對于鍋爐過熱器和再熱器高溫部件,在超臨界和特超臨界蒸汽參數(shù)下,其工作溫度范圍為560~650℃。在低溫段通常采用9~12%Cr鋼,從高溫耐蝕性角度考慮,最好選用12%Cr鋼。在600℃以上的高溫段,則必須采用奧氏體鉻鎳高合金耐熱鋼。根據(jù)近期的研究成果,對于高溫段過熱器和再熱器管件,為保證足夠高的高溫耐蝕性和抗氧化性,應(yīng)當選用鉻含量大于20%的奧氏體鋼,例如25Cr-20NiNbN(HR3C),23Cr-18NiCuWNbN(SAVE25),22Cr-15NiNbN(Tempaloy A-3),和20Cr-25NiMoNbTi(NF709)等。
在相當高的蒸汽參數(shù)下(375 bar/700℃)下,在過熱器出口段,由于奧氏體鋼蠕變強度不足,不能滿足要求,而必須采用鎳基合金,如Alloy617.
現(xiàn)代奧氏體耐熱鋼與傳統(tǒng)的奧氏體耐熱鋼相比,其最大特點是含有多組元的碳化物強化元素,從而在很大程度上提高了鋼材的蠕變強度。
對于超臨界鍋爐機組的高壓出口集箱和主蒸汽管道等厚壁部件主要采用改進型的9-12%Cr馬氏體鉻鋼。
9~12%馬氏體鉻鋼的發(fā)展規(guī)律與前述的奧氏體耐熱鋼相似,即從最原始的Cr-Mo二元合金向多組元合金演變,其主攻方向是盡可能提高鋼材的高溫蠕變強度,減薄厚壁部件的壁 厚,以簡化制造工藝和降低制造成本。上述鋼種由于 嚴格控制了碳、硫、磷含量,焊接性明顯改善。在國外超臨界和特臨界鍋爐已逐步推廣應(yīng)用,取得了可觀的經(jīng)濟效益。
2 壓力容器用鋼的新發(fā)展
近年來,壓力容器用鋼的發(fā)展與鍋爐用鋼不同,其主攻方向是提高鋼的純凈度,即采用各種先進的冶煉技術(shù),最大限度地降低鋼中的有害雜質(zhì)元素,如硫、磷、氧、氫和氮等的含量。這些冶金技術(shù)的革新,不僅明顯地提高了鋼的沖擊韌性,特別是低溫沖擊韌性,抗應(yīng)變時效性、抗回火脆性、抗中子幅照脆化性和耐蝕性,而且可大大改善其加工性能,包括焊接性和熱加工性能。
對比采用常規(guī)冶煉方法和現(xiàn)代熔煉方法軋制的16MnR鋼板的化學成分和不同溫度下的缺口沖擊韌度和應(yīng)變時效后的沖擊韌性,數(shù)據(jù)表明,超低級的硫、磷、氮含量顯著地提高了普通低合金鋼的低溫沖擊韌度和抗應(yīng)變時效性。
高純凈化對深低溫用9%Ni鋼的極限工作溫度(-196℃)下的缺口沖擊韌度也起到相當良好的作用,按美國ASTM A353和A553(9%Ni)鋼標準,該鋼種在-196℃沖擊功的保證值為27J.但按大型液化天然氣(LNG)儲罐的制造技術(shù)條件,9% Ni鋼殼體-196℃的沖擊功應(yīng) 70J,相差2.6倍之多。這一問題也是通過9% Ni鋼的純凈化處理而得到完滿的解決。同時還大大改善了9% Ni鋼的焊接性。焊接不必預(yù)熱,焊后亦無須熱處理。對于厚度30mm以下的9%Ni鋼,焊前不必預(yù)熱,焊后亦無需熱處理。這對于大型(10萬m3以上)LNG儲罐的建造,具有十分重要的意義。
把9% Ni鋼標準的化學成分和力學性能并與高純度9% Ni鋼相應(yīng)的性能進行對比,它們之間的明顯差異。
在高壓加氫裂化反應(yīng)容器中,由于工作溫度高于450℃,殼體材料必須采用2.25CrlMo或3CrlMo低合金抗氧鋼。但這類鋼在450℃以上溫度下長期使用時,會產(chǎn)生回火脆性,使鋼的韌性明顯下降,給加氫反應(yīng)的安全運行造成隱患。
近期的大量研究證明,上列鉻鉬鋼的回火脆性主要起因于鋼中P、Sn、Sb和As等微量雜質(zhì)。合金元素Si和Mn也對鋼的回火脆性起一定的促進作用。因此必須通過現(xiàn)代的冶金技術(shù),把鋼中的這些雜質(zhì)降低到最低的水平。目前,許多國外鋼廠已提出嚴格控制鋼中雜質(zhì)含量的供貨技術(shù)條件?,F(xiàn)代煉鋼技術(shù)能夠達到了最低雜質(zhì)含量的上限,可大大降低2.25CrlMo和3CrlMo鋼的回火脆性敏感性,其回火脆性指數(shù)J低于100,而普通的2.25Cr-lMo鋼的J 指數(shù)高達300.
由此可見,壓力容器用鋼的純凈化是一種必然的發(fā)展趨勢。
近幾年來,各類不銹鋼在金屬結(jié)構(gòu)制造業(yè)中應(yīng)用急速增長,其年增長率為5.5%,2003年世界不銹鋼消耗量為2150萬噸,其中我國不銹鋼的用量占54.2%極大部分用于各種壓力容器和管道,包括部分輸油輸氣管線。
為滿足各種不同的運行條件下的耐蝕性要求,并改善不同施工條件下的加工性能,近期開發(fā)了多種性能優(yōu)異的不銹鋼,其中包括超級馬氏體不銹鋼、超級鐵素體不銹鋼,鐵素體―奧氏體雙相不銹鋼和超級鐵素體―奧氏體不銹鋼。這些新型不銹鋼的共同特點是超低碳、超低雜質(zhì)含量、合金元素的匹配更趨優(yōu)化,不僅顯著提高了其在各種腐蝕介質(zhì)下的耐蝕性,而且大大改善了焊接性和熱加工性能。在一定的厚度范圍,超級馬氏體不銹鋼焊前可不必預(yù)熱,焊后亦無需作熱處理。這對于大型儲罐和跨國海底輸油輸氣管線的建設(shè)具有重要的經(jīng)濟意義。
目前已在壓力容器和管道制造中得到實際應(yīng)用的馬氏體不銹鋼、鐵素體―奧氏體雙相不銹鋼和超級雙相不銹鋼,這些不銹鋼合金系列與常規(guī)不銹鋼之間存在較大的差異。
3 管道用鋼的新發(fā)展
管道用鋼的發(fā)展在很多方面與前述的鍋爐與壓力容器用鋼相似。實際上很多鋼種和鋼號都是相同的,其中只有輸氣管線用鋼可以認為是獨立的分支。近10年來,輸送管線的工作應(yīng)力已從40bar提高到100bar,甚至更高。最近中國臺灣省建造了一座1600MW抽水蓄能電站,其壓水管道采用了X100型(屈服強度690Mpa)高強度鋼。
目前在世界范圍內(nèi),輸送管線中采用的最高強度級別的鋼種為X80型,相當于我國標準鋼號L555,其最低屈服強度為555Mpa.國外已計劃將X100型高強度鋼用于輸送管線。
鑒于管線的焊接都在野外作業(yè),要求鋼材具有良好的焊接性,因此管線用鋼多采用低碳,低硫磷的微合金鋼,并經(jīng)熱力學處理。
鍋爐、壓力容器和管道焊接方法的新發(fā)展
鍋爐、壓力容器和管道均為全焊結(jié)構(gòu),焊接工作量相當大,質(zhì)量要求十分高。焊接工作者總是在不斷探索優(yōu)質(zhì)、高效、經(jīng)濟的焊接方法,并取得了引人注目的進步。以下重點介紹在國內(nèi)外鍋爐、壓力容器與管道制造業(yè)中已得到成功應(yīng)用的先進高效焊接方法。
1 鍋爐膜式水冷壁管屏雙面脈沖MAG自動焊接生產(chǎn)線
為提高鍋爐熱效率,節(jié)省材料費用,大型電站鍋爐式水冷壁管屏均采用光管+扁鋼組焊而成。這種部件的外形尺寸與鍋爐的容量成正比。一臺600MW電站鍋爐膜式水冷壁管屏的拼接縫總長已超過萬米。因此必須采用高效的焊接方法。在上世紀90年代以前,國內(nèi)外鍋爐爐制造廠大多數(shù)采用多頭(6~8頭)埋弧自動焊。在多年的實際生產(chǎn)中發(fā)現(xiàn),這種埋弧焊方法存在一致命的缺點,即埋弧焊只能從單面焊接,管屏焊后不可避免會產(chǎn)生嚴重的撓曲變形。管屏長度愈長,變形愈大,必須經(jīng)費工的校正工序。不僅提高了生產(chǎn)成本,而且延長了成產(chǎn)周期。因此必須尋求一種更合理的焊接方法。
上世紀80年代后期,日本三菱重工率先開發(fā)膜式水冷壁管屏雙面脈沖MAG自動焊新焊接方法及焊接設(shè)備,并成功地應(yīng)用于焊接生產(chǎn)。這種焊接方法在日本俗稱MPM法,其特點是多個MAG焊焊頭從管屏的正反兩面同時進行焊接。焊接過程中,正反兩面焊縫的焊接變形相互抵消。管屏焊接后基本上無撓曲變形。這是一項重大的技術(shù)突破。經(jīng)濟效益顯著。數(shù)年后哈爾濱鍋爐廠最先從日本三菱公司引進了這項先進技術(shù)和裝備,并在鍋爐膜式壁管屏拼焊生產(chǎn)中得到成功的應(yīng)用。之后,逐步在我國各大鍋爐制造廠推廣應(yīng)用,至今已有十多條MPM焊接生產(chǎn)線正常投運。管屏MPM焊接的主要技術(shù)關(guān)鍵是必須保證正反兩面的焊縫質(zhì)量,包括焊縫熔深,成形和外形尺寸基本相同。這就要求在仰焊位置的焊接采用特殊的焊接工藝―脈沖電弧MAG焊(富氬混合氣體)。焊接電源和送絲系統(tǒng)應(yīng)在管屏全長的焊接過程中產(chǎn)生穩(wěn)定的脈沖噴射過渡。因此必須配用高性能和高質(zhì)量的脈沖焊接電源和恒速送絲機。這些焊接設(shè)備的性能和質(zhì)量愈高,管屏反面焊縫的質(zhì)量愈穩(wěn)定,合格率愈高。實際上,哈鍋廠從日本三菱重工引進的原裝機只配用了晶閘管控制的第二代脈沖MIG/MAG焊電源,送絲機也只是傳統(tǒng)的等速送絲機,管屏反面焊縫的合格率達不到100%,總有一定的返修量,為進一步改進膜式壁管屏MPM焊機的性能,最近國產(chǎn)的管屏MPM焊機配用了第三代微要控制逆變脈沖焊接電源和測速反饋的恒速送絲機,明顯提高了反面焊縫的合格率。
2 鍋爐受熱面管對接高效焊接法
鍋爐受熱面過熱器和再熱器部件管件接頭的數(shù)量和壁厚,隨著鍋爐容量的提高而成倍增加,600MW電站鍋爐熱器的最大壁厚已達13mm,接頭總數(shù)超過數(shù)千個。傳統(tǒng)的填充冷絲TIG焊的效率以遠遠不能滿足實際生產(chǎn)進展的要求,必須采用效率較高的且保接頭質(zhì)量的溶焊方法。為此,哈鍋和上鍋相繼從日本引進了厚壁管細絲脈沖MIG自動焊管機,其效率比傳統(tǒng)的TIG焊提高3~5倍。后因經(jīng)常出現(xiàn)根部未焊透和弧坑下垂等缺陷而改用TIG焊封底MIG焊填充和蓋面工藝,改進的焊接工藝雖然基本上解決了根部未焊透的問題,但降低了焊接效率,增加了設(shè)備的投資,同時也使操作程序復(fù)雜化。最近,上鍋,哈鍋又從國外引進了熱絲TIG自動焊管機。熱絲TIG焊的原理是將填充絲在送入焊接熔池之前由獨立的恒壓交流電源供電。電阻加熱至650~800℃高溫,這就大大加速了焊絲的熔化速度,其熔敷率接近于相同直徑的MTG焊熔敷率。另外,TIG方法良好的封底特性確保了封底焊道的熔質(zhì)量,因此,熱絲TIG焊不失為小直徑壁厚管對接焊優(yōu)先選擇的一種焊接方法。然而不應(yīng)當由此全面否定脈沖MIG焊在小直徑壁厚管對接中應(yīng)用的可行性。曾通過大量的試驗查明,在厚壁管MIG焊對接接頭中,根部末焊透90%以上位于超弧段,而弧坑下垂起因于連續(xù)多層焊時熔池金屬熱量積聚導(dǎo)致過熱。如將焊接電源電弧的功率作精確的控制,則完全可以消除上述缺陷的形成。但由于引進的MIG焊自動焊管機原配的焊接電源為晶閘管脈沖電源,無法實現(xiàn)電弧功率的程序控制如改用當代最先進的全數(shù)字控制逆變脈沖焊接電源或波形控制脈沖焊接電源(計算機軟件控制小),則可容易地按焊接工藝要求,對焊接電弧的功率作精確的控制,確保接頭的焊接質(zhì)量。
最新資訊
- 2024年度二級注冊結(jié)構(gòu)工程師專業(yè)考試資料:規(guī)范、標準、規(guī)程2024-08-13
- 2024年度一級注冊結(jié)構(gòu)工程師專業(yè)考試資料:規(guī)范、標準、規(guī)程2024-08-13
- 環(huán)球網(wǎng)校雙11預(yù)售開啟!定金百倍膨脹,直播再返現(xiàn)金2023-10-25
- 環(huán)球網(wǎng)校結(jié)構(gòu)工程師雙11活動來啦,限時優(yōu)惠!2023-10-25
- 注冊結(jié)構(gòu)工程師考試大綱下載2023-05-16
- 2023年一級注冊結(jié)構(gòu)工程師考試大綱內(nèi)容2023-04-14
- 2023年結(jié)構(gòu)工程師教材內(nèi)容變動對比2023-04-10
- 2023年注冊結(jié)構(gòu)工程師專業(yè)基礎(chǔ)教材變動對比2023-04-03
- 2023年新版注冊結(jié)構(gòu)工程師基礎(chǔ)教材2023-03-29
- 2023一級結(jié)構(gòu)工程師基礎(chǔ)考試真題2023-01-29