公務(wù)員考試行測輔導(dǎo):數(shù)學(xué)必備公式
課程推薦:2014年公務(wù)員課程7天免費學(xué) :基礎(chǔ)精講 高效強化 高效押題 專項特訓(xùn)
個性課程:2014年公務(wù)員個性輔導(dǎo):申論批改 技巧專講 沖刺密卷 個性定制
一、數(shù)字特性
掌握一些最基本的數(shù)字特性規(guī)律,有利于我們迅速的解題。(下列規(guī)律僅限自然數(shù)內(nèi)討論)
(一)奇偶運算基本法則
【基礎(chǔ)】奇數(shù)±奇數(shù)=偶數(shù);
偶數(shù)±偶數(shù)=偶數(shù);
偶數(shù)±奇數(shù)=奇數(shù);
奇數(shù)±偶數(shù)=奇數(shù)。
【推論】
1.任意兩個數(shù)的和如果是奇數(shù),那么差也是奇數(shù);如果和是偶數(shù),那么差也是偶數(shù)。
2.任意兩個數(shù)的和或差是奇數(shù),則兩數(shù)奇偶相反;和或差是偶數(shù),則兩數(shù)奇偶相同。
(二)整除判定基本法則
1.能被2、4、8、5、25、125整除的數(shù)的數(shù)字特性
能被2(或5)整除的數(shù),末一位數(shù)字能被2(或5)整除;
能被4(或 25)整除的數(shù),末兩位數(shù)字能被4(或25)整除;
能被8(或125)整除的數(shù),末三位數(shù)字能被8(或125)整除;
一個數(shù)被2(或5)除得的余數(shù),就是其末一位數(shù)字被2(或5)除得的余數(shù);
一個數(shù)被4(或 25)除得的余數(shù),就是其末兩位數(shù)字被4(或 25)除得的余數(shù);
一個數(shù)被8(或125)除得的余數(shù),就是其末三位數(shù)字被8(或125)除得的余數(shù)。
2.能被3、9整除的數(shù)的數(shù)字特性
能被3(或9)整除的數(shù),各位數(shù)字和能被3(或9)整除。
一個數(shù)被3(或9)除得的余數(shù),就是其各位相加后被3(或9)除得的余數(shù)。
3.能被11整除的數(shù)的數(shù)字特性
能被11整除的數(shù),奇數(shù)位的和與偶數(shù)位的和之差,能被11整除。
(三)倍數(shù)關(guān)系核心判定特征
如果a∶b=m∶n(m,n互質(zhì)),則a是m的倍數(shù);b是n的倍數(shù)。
如果x=mny(m,n互質(zhì)),則x是m的倍數(shù);y是n的倍數(shù)。
如果a∶b=m∶n(m,n互質(zhì)),則a±b應(yīng)該是m±n的倍數(shù)。
二、乘法與因式分解公式
正向乘法分配律:(a+b)c=ac+bc;
逆向乘法分配律:ac+bc=(a+b)c;(又叫“提取公因式法”)
平方差:a^2-b^2=(a-b)(a+b);
完全平方和/差:(a±b)^2=a^2±2ab+b^2;
立方和:a^3+b^3=(a+b)(a^2-ab+b^2);
立方差:a^3-b^3=(a-b)(a^2+ab+b^2);
完全立方和/差:(a±b)^3=a^3±3a^2b+3ab^2±b^3;
等比數(shù)列求和公式:S=a1(1-q^n)/(1-q) (q≠1);
等差數(shù)列求和公式:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2。
三、三角不等式
丨a+b丨≤丨a丨+丨b丨;丨a-b丨≤丨a丨+丨b丨;丨a-b丨≥丨a丨-丨b丨;-丨a丨≤a≤丨a丨;丨a丨≤b?-b≤a≤b。
四、某些數(shù)列的前n項和
1+2+3+…+n=n(n+1)/2;
1+3+5+…+(2n-1)=n^2;
2+4+6+…+(2n)=n(n+1);
1^2+3^2+5^2+…+(2n-1)^2=n(4n^2-1)/3
1^3+2^3+3^3+…+n^3==(n+1)^2*n^2/4
1^3+3^3+5^3+…+(2n-1)^3=n^2(2n^2-1)
1×2+2×3+…+n(n+1)=n*(n+1)*(n+2)/3
溫馨提示:請大家及時關(guān)注環(huán)球網(wǎng)校公務(wù)員頻道及論壇,小編將第一時間為大家提供公務(wù)員考試最新息。
編輯推薦:
國家公務(wù)員考試行測輔導(dǎo):組合選項題解題策略
國家公務(wù)員考試行測輔導(dǎo):組合排列題解題策略
2014年國家公務(wù)員考試行測輔導(dǎo):解讀數(shù)量關(guān)系
2014年國家公務(wù)員考試行測輔導(dǎo):組合選項題解析
最新資訊
- ‌2025年國考備考資料免費下載:高頻成語辨析早讀講義助你突破語言關(guān)2024-12-12
- 2025國考申論范文下載:以創(chuàng)新為翼,翱翔制造強國藍天2024-11-15
- 2025年國考申論范文:教養(yǎng)之光,文明社會的金鑰匙2024-11-14
- 2025國考申論寫作范文:以“中國精神”為筆,繪就民族脊梁新篇章2024-11-14
- 2025年國考行測答題技巧:片段積累小技巧,彎路走的少之疑問句2024-11-02
- 【國考必贏】2025國考申論備考:講解稿的滿分秘籍2024-10-23
- 2025國考常識備考之中國山脈2024-10-10
- 2025年國考申論范文:創(chuàng)新引領(lǐng)未來,奮斗鑄就輝煌2024-09-20
- 2025年國考申論范文:守護綠水青山,共繪金山銀山新畫卷2024-09-19
- 點擊查看!2025年國家公務(wù)員備考計劃2024-09-18