湖北公務員考試行測“兩數之差”問題
雞兔同籠中的總頭數是“兩數之和”,如果把條件換成“兩數之差”,又應該怎樣去解呢?
例7 買一些4分和8分的郵票,共花6元8角。已知8分的郵票比4分的郵票多40張,那么兩種郵票各買了多少張?
解一:如果拿出40張8分的郵票,余下的郵票中8分與4分的張數就一樣多。
(680-8×40)÷(8+4)=30(張),這就知道,余下的郵票中,8分和4分的各有30張。
因此8分郵票有40+30=70(張)。
答:買了8分的郵票70張,4分的郵票30張。轉自環(huán) 球 網 校edu24ol.com
也可以用任意假設一個數的辦法。
解二:譬如,假設有20張4分,根據條件“8分比4分多40張”,那么應有60張8分。以“分”作為計算單位,此時郵票總值是4×20+8×60=560.比680少,因此還要增加郵票。為了保持“差”是40,每增加1張4分,就要增加1張8分,每種要增加的張數是:
(680-4×20-8×60)÷(4+8)=10(張)。
因此4分有20+10=30(張),8分有60+10=70(張)。
例8 一項工程,如果全是晴天,15天可以完成。倘若下雨,雨天一天工程要多少天才能完成?
解:類似于例3,我們設工程的全部工作量是150份,晴天每天完成10份,雨天每天完成8份。用上一例題解一的方法,晴天有
(150-8×3)÷(10+8)= 7(天)。
雨天是7+3=10天,總共7+10=17(天)。
答:這項工程17天完成。
請注意,如果把“雨天比晴天多3天”去掉,而換成已知工程是17天完成,由此又回到上一節(jié)的問題。差是3,與和是17,知道其一,就能推算出另一個。這說明了例7、例8與上一節(jié)基本問題之間的關系。
總腳數是“兩數之和”,如果把條件換成“兩數之差”,又應該怎樣去解呢?
例9 雞與兔共100只,雞的腳數比兔的腳數少28.問雞與兔各幾只?
解一:假如再補上28只雞腳,也就是再有雞28÷2=14(只),雞與兔腳數就相等,兔的腳是雞的腳4÷2=2(倍),于是雞的只數是兔的只數的2倍。
兔的只數是:(100+28÷2)÷(2+1)=38(只)。
雞是:100-38=62(只)。
答:雞62只,兔38只。
當然也可以去掉兔28÷4=7(只)。兔的只數是(100-28÷4)÷(2+1)+7=38(只)。
也可以用任意假設一個數的辦法。
解二:假設有50只雞,就有兔100-50=50(只)。此時腳數之差是:
4×50-2×50=100,
比28多了72.就說明假設的兔數多了(雞數少了)。為了保持總數是100,一只兔換成一只雞,少了4只兔腳,多了2只雞腳,相差為6只(千萬注意,不是2)。因此要減少的兔數是:
(100-28)÷(4+2)=12(只)。
兔只數是:
50-12=38(只)。
另外,還存在下面這樣的問題:總頭數換成“兩數之差”,總腳數也換成“兩數之差”。
例10 古詩中,五言絕句是四句詩,每句都是五個字;七言絕句是四句詩,每句都是七個字。有一詩選集,其中五言絕句比七言絕句多13首,總字數卻反而少了20個字。問兩種詩各多少首。
解一:如果去掉13首五言絕句,兩種詩首數就相等,此時字數相差
13×5×4+20=280(字)。
每首字數相差:7×4-5×4=8(字)。
因此,七言絕句有:28÷(28-20)=35(首)。轉自環(huán) 球 網 校edu24ol.com
五言絕句有:35+13=48(首)。
答:五言絕句48首,七言絕句35首。
解二:假設五言絕句是23首,那么根據相差13首,七言絕句是10首。字數分別是20×23=460(字),28×10=280(字),五言絕句的字數,反而多了:460-280=180(字)。與題目中“少20字”相差:180+20=200(字)。
說明假設詩的首數少了。為了保持相差13首,增加一首五言絕句,也要增一首七言絕句,而字數相差增加8.因此五言絕句的首數要比假設增加
200÷8=25(首)。
五言絕句有
23+25=48(首)。
七言絕句有
10+25=35(首)。
在寫出“雞兔同籠”公式的時候,我們假設都是兔,或者都是雞,對于例7、例9和例10三個問題,當然也可以這樣假設。現在來具體做一下,把列出的計算式子與“雞兔同籠”公式對照一下,就會發(fā)現非常有趣的事。
例7,假設都是8分郵票,4分郵票張數是(680-8×40)÷(8+4)=30(張)。
例9,假設都是兔,雞的只數是(100×4-28)÷(4+2)=62(只)。
例10,假設都是五言絕句,七言絕句的首數是(20×13+20)÷(28-20)=35(首)。
首先,請讀者先弄明白上面三個算式的由來,然后與“雞兔同籠”公式比較,這三個算式只是有一處“-”成了“+”。其奧妙何在呢?當你進入初中,有了負數的概念,并會列二元一次方程組,就會明白,從數學上說,這一講前兩節(jié)列舉的所有例子都是同一件事。
例11
有一輛貨車運輸2000只玻璃瓶,運費按到達時完好的瓶子數目計算,每只2角,如有破損,破損瓶子不給運費,還要每只賠償1元。結果得到運費379.6元,問這次搬運中玻璃瓶破損了幾只?
解:如果沒有破損,運費應是400元。但破損一只要減少1+0.2=1.2(元)。因此破損只數是(400-379.6)÷(1+0.2)=17(只)。
答:這次搬運中破損了17只玻璃瓶。
請你想一想,這是“雞兔同籠”同一類型的問題嗎?
例12 有兩次自然測驗,第一次24道題,答對1題得5分,答錯(包含不答)1題倒扣1分;第二次15道題,答對1題8分,答錯或不答1題倒扣2分,小明兩次測驗共答對30道題,但第一次測驗得分比第二次測驗得分多10分,問小明兩次測驗各得多少分?
解一:如果小明第一次測驗24題全對,得5×24=120(分)。那么第二次只做對30-24=6(題)得分是:8×6-2×(15-6)=30(分)。 兩次相差:120-30=90(分)。
比題目中條件相差10分,多了80分。說明假設的第一次答對題數多了,要減少。第一次答對減少一題,少得5+1=6(分),而第二次答對增加一題不但不倒扣2分,還可得8分,因此增加8+2=10分。兩者兩差數就可減少6+10=16(分)。(90-10)÷(6+10)=5(題)。
因此,第一次答對題數要比假設(全對)減少5題,也就是第一次答對19題,第二次答對:30-19=11(題)。
第一次得分:5×19-1×(24- 9)=90.
第二次得分:8×11-2×(15-11)=80.
答:第一次得90分,第二次得80分。
解二:答對30題,也就是兩次共答錯
24+15-30=9(題)。
第一次答錯一題,要從滿分中扣去5+1=6(分),第二次答錯一題,要從滿分中扣去8+2=10(分)。答錯題互換一下,兩次得分要相差6+10=16(分)。
如果答錯9題都是第一次,要從滿分中扣去6×9.但兩次滿分都是120分。比題目中條件“第一次得分多10分”,要少了6×9+10.因此,第二次答錯題數是:(6×9+10)÷(6+10)=4(題)。
第一次答錯 9-4=5(題)。
第一次得分 5×(24-5)-1×5=90(分)。
第二次得分 8×(15-4)-2×4=80(分)。
習題二
1.買語文書30本,數學書24本共花83.4元。每本語文書比每本數學書貴0.44元。每本語文書和數學書的價格各是多少?
2.甲茶葉每千克132元,乙茶葉每千克96元,共買這兩種茶葉12千克。甲茶葉所花的錢比乙茶葉所花錢少354元。問每種茶葉各買多少千克?
3.一輛卡車運礦石,晴天每天可運16次,雨天每天只能運11次。一連運了若干天,有晴天,也有雨天。其中雨天比晴天多3天,但運的次數卻比晴天運的次數少27次。問一連運了多少天?
4.某次數學測驗共20道題,做對一題得5分,做錯一題倒扣1分,不做得0分。小華得了76分。問小華做對了幾道題?
5.甲、乙二人射擊,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分。每人各射10發(fā),共命中14發(fā)。結算分數時,甲比乙多10分。問甲、乙各中幾發(fā)?
6.甲、乙兩地相距12千米。小張從甲地到乙地,在停留半小時后,又從乙地返回甲地,小王從乙地到甲地,在甲地停留40分鐘后,又從甲地返回乙地。已知兩人同時分別從甲、乙兩地出發(fā),經過4小時后,他們在返回的途中相遇。如果小張速度比小王速度每小時多走1.5千米,求兩人的速度。
最新資訊
- 【國考必贏】2025國考申論備考:講解稿的滿分秘籍2024-10-23
- 2025國考常識備考之中國山脈2024-10-10
- 2025年國考申論范文:創(chuàng)新引領未來,奮斗鑄就輝煌2024-09-20
- 2025年國考申論范文:守護綠水青山,共繪金山銀山新畫卷2024-09-19
- 點擊查看!2025年國家公務員備考計劃2024-09-18
- 2025年國考申論范文:數字經濟賦能實體經濟新篇章2024-09-18
- 2025年國考申論范文:平衡速度與質量,守護文化之根2024-09-17
- 2025年國考申論范文:中國制造業(yè)正穩(wěn)健駛向高質量發(fā)展的“高速路”2024-09-15
- 2025年國家公務員行測需要掌握哪些知識點?2024-09-13
- 熱點積累:2025年國考申論熱點匯總2024-09-12